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Abstract
We determine a formula for the An singularity invariants involved in the Canonical Model
Singularities criterion for bigness of the cotangent bundle of a surface of general type appearing
in Part I of this work. Our approach of calculating these invariants is of interest on its own. We
determine, for a given degree m, the space of symmetric differentials on the complement of the
exceptional locus E of the resolution of a germ of an An singularity that extend holomorphically
across E. We give a full description of the function ℏ0(An, m) giving the codimension of these
spaces for each m. We also characterize the precise extent to which the poles along E of the
symmetric differentials on the complement are milder than logarithmic poles.
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1 Introduction
In Part I of this work [1], we present the (quotient singularities) QS-bigness criterion and its special
case, the (canonical model singularities) CMS-criterion, concerning bigness of the cotangent bundle
of surfaces of general type X. The CMS-criterion for the bigness of the cotangent bundle of X has
two terms: one comes from the topology of the minimal model Xmin of X and the other comes from
the contribution of the singularities in the canonical model Xcan of X to the m-asymptotic growth
of h1(Xmin, SmΩ1

Xmin
). The main purpose of this paper is to determine this contribution when the

singularities are of type An. Our approach also leads to several extension results for symmetric
differentials on the complement of the exceptional locus of the minimal resolution of an An singularity.

In Section 1, we give the background and define the strategy to determine the 1st cohomological Ω-
asymptotics, h1

Ω(y), of a log terminal (quotient) surface singularity y. These are the surface invariants
involved in the QS-bigness criterion. Our approach uses the theory developed by Wahl [2], Blache [3]
and Langer [4] for the Chern classes (local and global) and the asymptotic Riemann-Roch formulas
for orbifold vector bundles.

The 1st cohomological Ω-asymptotics, h1
Ω(y), of a surface singularity y is defined by

h1
Ω(y) = lim inf

m→∞

h0(Uy, R1σ∗SmΩ1
Uy

)
m3 ,
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where Uy is a neighborhood germ of the surface singularity y and σ : Ũy → Uy its minimal
resolution. It was shown in the proof of the QS-criterion (Theorem 2 of Part I) that if X is the
minimal resolution of a surface of general type Y with quotient singularities, then∑

y∈Sing(Y )

h1
Ω(y) ≤ h1

Ω(X) := lim
m→∞

h1(X, SmΩ1
X)

m3

The right side h1
Ω(X) is the measurement of the m-asymptotic growth of h1(X, SmΩ1

X). The sum
on the left side is called the localized component of h1

Ω(X) and we denote it by Lh1
Ω(X). It is a lower

bound for h1
Ω(X) determined by the singularities of Y .

Our approach to find h1
Ω(y) uses the relations between the local invariants appearing in the

comparison between the Euler characteristics an orbifold vector bundle V on an orbifold surface Y
and of a vector bundle Ṽ on its minimal resolution X, σ : X → Y , with V = σ∗Ṽ . The key relation
for us, requires m-asymptotic results for V = (SmΩ1

Y )∨∨ (see section 3.1), is:

lim
m→∞

ℏ0(y, m) + h1(y, m)
m3 = 1

3!
(
(c2(y, TX)− c2

1(y, TX)
)

where h1(y, m) := h0(Uy, R1σ∗SmΩ1
Uy

), c2(y, TX), c2
1(y, TX) ∈ Q are the local Chern numbers of y

and

ℏ0(y, m) = dim[H0(Ũy \ E, SmΩ1
Ũy

)/H0(Ũy, SmΩ1
Ũy

)],

where (Ũy, E) is the minimal resolution of the neighborhood germ (Uy, y).

In Section 2, we present a method to find the invariants ℏ0(y, m) and their asymptotics when y
is an An singularity. We show that for fixed n, ℏ0(An, m) is a polynomial of degree 3 in m up to
the linear term. In fact, it is a quasi-polynomial in m, i.e. coefficients are periodic functions of m,
with the cubic and quadratic coefficients constant. The main interest in this work, with respect to
the discussion above, lies in finding the cubic term of such a polynomial. In Theorem 1, we give a
closed formula for the cubic and quadratic coefficients of ℏ0(An, m). We note that the special case
of A1 was considered in [5], see [6] for the cubic coefficient and [7] for the quasi-polynomial.

Theorem 1 Let (X̃, E) be the minimal resolution of the germ (X, x) of an An singularity. Then the following
holds for ℏ0(An, m) = dim[H0(X̃ \ E, SmΩ1

X̃
)/H0(X̃, SmΩ1

X̃
)]:

(a) ℏ0(An, m) is given by a weighted lattice sum over a polygon Pn(m):

ℏ0(An, m) =
∑

x=(x1,x2)∈Pn(m)∩Z2

x1+(n+1)x2≡m mod 2

hn,m(x)

where

i) the polygon Pn(m) is symmetric about the x1-axis and Pn(m) ∩ {x2 ≥ 0} is given by the
inequalities x1 ≥ 0, x2 ≥ 0, x1 − (n− 1)x2 ≤ m and −x1 + (n + 1)x2 ≤ m + 2.

ii) the weight function hn,m(x) = min
{

n−1∑
r=0

αn,m,r(x), βn,m(x)
}

, with

αn,m,r(x) = max
{

0,
m− x1 + (2r − n + 1)x2

2

}
βn,m(x) = max {0, m + 1− αn,m,−1(x)− αn,m,n(x)} .

(b) ℏ0(An, m) = ℏ0
Ω(An)m3 + 3ℏ0

Ω(An)m2 + O(m), with

ℏ0
Ω(An) := lim

m→∞

ℏ0(An, m)
m3 = 4

3

n∑
j=1

1
j2 −

12n4 + 65n3 + 117n2 + 72n

6(n + 1)2(n + 2)2 .
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To understand the weight function, some setup needs to be introduced. Let X̃ be minimal res-
olution of the An affine model X = {xz + yn+1 = 0} ⊂ C3 and E the exceptional locus. Using the
smoothing π : C2 → X we define a 3-gradation on the algebra S(X̃ \E) :=

⊕∞
m=0 H0(X̃ \E, SmΩ1

X̃
).

A differential w has 3-degree (k̂, i, m) if w ∈ H0(X̃ \ E, SmΩ1
X̃

) and when w is viewed in
H0(C2, SmΩ1

C2)Zn+1 it vanishes to order i at 0, for the degree k̂ it comes from a block partition on
the Zn+1− invariant differential monomials, see Section 2.2.1.

The weight function hn,m(x) gives the dimension of the obstruction space for differentials in
the (x2, x1, m)-graded piece of S(X̃ \ E) to extend regularly along E. The polygon Pn(m) lives
on the (x1, x2)-plane, x1 = i and x2 = k̂. The weight function naturally induces a decomposition
of the polygon Pn(m) = ∪4n

ℓ=1Pℓ
n(m) by convex polygons where the weight functions hn,m,ℓ(x) :=

hn,m(x)|Pℓ
n(m) are defined by a single polynomial of degree 1 in x1, x2 (and m).

The function ℏ0(An, m) being a quasi-polynomial of degree 3 in m follows from the theory of
polynomial weighted lattice sums over convex polytopes P(b), where the parameter b = (b1, ..., bk)
defines P(b) via the inequalities, µl(x) ≤ bl, where the linear forms µl(x) are fixed, but b varies (see
[8], [9], [10]). Each polygon Pℓ

n(m) is of the form P(b(m)) with b(m) = (αℓ,1m+βℓ,1, ..., αℓ,km+βℓ,k

with k = 3, 4. Relevant to the task of finding the period of the quasi-polynomial ℏ0(An, m) (i.e. the
lcm of the periods of the coefficients of the quasi-polynomial) is that αℓ,i, βℓ,i and the coefficients of
the fixed linear forms µl(x) are in Q (and we know the denominators).

In future work we will describe non-asymptotic features of the quasi-polynomial ℏ0(An, m). One
such feature is a divisibility condition for the period. This result allows us to determine the quasi-
polynomials ℏ0(An, m) for low n and use them to investigate the presence of symmetric differentials
of low degrees on the resolution of certain classes surfaces (e.g. hypersurfaces in P3) with An type
singularities.

In Section 3, we derive applications of our knowledge of ℏ0(An, m) and the theory developed in
Section 2 describing the extension properties of differentials on X̃ \ E. The first application is the
main purpose of Part II of this work, that is, finding the closed formula for the 1st cohomological
Ω-asymptotics h1

Ω(x) for An singularities.

Theorem 2 The 1st cohomological Ω-asymptotics of an An singularity is given by:

h1
Ω(An) = n5 + 19n4 + 83n3 + 137n2 + 80n

6(n + 1)2(n + 2)2 − 4
3

n∑
k=1

1
k2 ,

In Part I [1] Section 3, Theorem 2 is used in combination with the CMS-bigness criterion to
obtain the strongest known results concerning:

i) the minimum dmin of the degrees d for which the deformation equivalence class of a smooth
hypersurfaces of P3 of degree d has representatives with big cotangent bundle. Theorem 4 of Part
I shows dmin ≤ 8, moreover in theory with Theorem 2 and considering resolutions of hypersurfaces
with only An singularities one could achieve dmin ≤ 6, but never dmin = 5;

ii) bigness of the cotangent bundle of the resolutions of cyclic coverings of P2 branched along line
arrangements, see Theorem 5 of Part I.

The second application is concerned with extension results and characterizes: 1) the precise extent
to which the poles along E of symmetric differentials on the complement of the exceptional locus
E of the minimal resolution of an An singularity are milder than logarithmic poles ([11] 4.14, see
also [2] 4.7 showed that the poles are at most logarithmic); 2) a sufficient condition for a symmetric
differential on the complement of the exceptional locus E of the minimal resolution of the germ of
an An singularity to extend holomorphically through E.
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Theorem 3 Let σ : (X̃, E) → (X, x) and π : (C2, 0) → (X, x) be the minimal resolution and the smoothing
of the An singularity germ (X, x). Then:

(a) The maximal divisor D such that:

H0(X̃ \ E, SmΩ1
X̃

) = H0(X̃, SmΩ1
X̃

(log E)⊗OX̃(−D))

is given by

D =
n∑

r=1

min(r−1,n−r)∑
j=0

⌈m− 2j

n + 1 ⌉

Er

with E = Un
r=1Er the exceptional locus (ordering such that Er ∩ Er+1 ̸= ∅).

(b) Let w ∈ H0(X \ x, SmΩ1
X) and w̄ ∈ H0(C2, SmΩ1

C2) with w̄|C2\0 = π∗w. Set ord(w) := maxi{w̄ ∈
miSmΩ1

C2}, m the maximal ideal at 0.
Then σ∗w extends holomorphically to X̃, if ord(w) ≥ nm.

2 Background
Let Y be an orbifold surface (i.e. with only quotient singularities) of general type and σ : X →
Y its minimal resolution. In this section we succinctly describe the invariants of orbifold surface
singularities involved in determining the presence of symmetric differentials on X with an emphasis
on the asymptotics limm→∞

h0(X,SmΩ1
X )

m3 (for more details see Section 1 of Part I of this work [1]).

Riemann-Roch gives:

h0(X, SmΩ1
X) =

∫
X

ch(SmΩ1
X)td(X) + h1(X, SmΩ1

X)− h2(X, SmΩ1
X) (1.1)

The first term
∫

X
ch(SmΩ1

X)td(X) is a polynomial of degree 3 in m with the coefficients involving
the Chern classes of X. The term h2(X, SmΩ1

X) vanishes for m ≥ 3 due to Bogomolov’s vanish-
ing, [12]. The term h1(X, SmΩ1

X) has the following decomposition (for further details see proof of
Theorem 2 in Part I [1]):

h1(X, SmΩ1
X) = Lh1(X, SmΩ1

X) + NLh1(X, SmΩ1
X) (1.2)

where the localized component (at the singularities):

Lh1(X, SmΩ1
X) :=

∑
y∈Sing(Y )

h1(y, SmΩ1
X) (1.3)

with h1(y, SmΩ1
X) := h0(Uy, R1σ∗SmΩ1

X̃
), where Uy is an affine neighborhood with Uy ∩ Sing(Y ) =

{y} and the non-localized component NLh1(X, SmΩ1
X) := h1(Y, σ∗SmΩ1

X).

The QS-bigness criterion (Theorem 2 of Part I) gives the criterion for the bigness of the cotangent
bundle of X (limm→∞

h0(X,SmΩ1
X )

m3 ̸= 0):

∑
y∈Sing(Y )

lim inf
m→∞

h1(y, SmΩ1
X)

m3 + s2(X)
3! > 0 =⇒ Ω1

X big (1.4)
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where s2(X)
3! = c2

1(X)−c2(X)
6 is the cubic coefficient and the leading term in m of

∫
X

ch(SmΩ1
X)td(X).

The main goal of this work is to provide a method to find h1(y, SmΩ1
X) and determine its

asymptotics, limm→∞
h1(y,SmΩ1

X )
m3 , when y is an An singularity (we will see that this limit exists).

We use an indirect approach coming from the theory developed by Wahl [2], Blache [3] and Langer
[4] concerning orbifold vector bundles, their Chern classes, and Riemann-Roch formulas (with their
asymptotics).

Notation. Hereon, h1(y, m) := h1(y, SmΩ1
X) and h1(An, m) := h1(y, m) where y is the singularity

An.

For further background on the general theory concerning what follows, see Section 1 of Part I [1]
(or see [3], [4], [2]).

The difference between the Euler charateristics of the vector bundle SmΩ1
X on X and of the

orbifold vector bundle ŜmΩ1
Y := (σ∗Ω1

X)∨∨ on Y is measured by the sum over all the singular points
y of Y of the local Euler characteristic of ŜmΩ1

Y at y:

χ(y, m) := χ(y, SmΩ1
X) := ℏ0(y, m) + h1(y, m) (1.5)

ℏ0(y, m) := dim[H0(Ũy \ E, SmΩ1
X)/H0(Ũy, SmΩ1

X)] (1.6)

The relations between the Euler characteristic of ŜmΩ1
Y on Y , the orbifold Euler characteristic

of ŜmΩ1
Y on Y , and the orbifold Euler characteristic of SmΩ1

X on X, where the orbifold Euler
characteristic of an orbifold vector bundle F on a orbifold Z is χorb(Z,F) :=

∫
Z

chorb(F)tdorb(Z)
(involving orbifold Chern classes) give:

h1(y, m) = µ(y, m)− χorb(y, m)− ℏ0(y, m) (1.7)

with:

µ(y, m) := 1
|Gy|

∑
g∈Gy\{Id}

Tr(ρŜmΩ1
Y

(g))
det(Id− g) (1.8)

χorb(y, m) := s2(y)
3! m3 − 1

2c2(y)m2 − c2
1(y) + 3c2(y)

12 m + c2
1(y) + c2(y)

12 (1.9)

where:

i) µ(y, m) is the contribution that the singularity y gives to the discrepancy between the Euler
characteristic of ŜmΩ1

Y and the orbifold Euler characteristic of ŜmΩ1
Y on Y . Gy ⊂ GL(2,C) is

the local fundamental group and ρŜmΩ1
Y

the representation of Gy associated to the orbifold vector
bundle ŜmΩ1

Y (see [3] 2.6 for the bijective association of isomorphism classes of representations of
Gy to isomorphism classes of germs of orbifold vector bundles at the quotient singularity with local
fundamental group Gy).

ii) χorb(y, m) is the contribution that the singularity y gives to the discrepancy between the orbifold
Euler characteristics of SmΩ1

X on X and of ŜmΩ1
Y on Y .

c2
1(y) := c2

1(y, TX) = c2
1(y, Ω1

X) ∈ Q,

c2(y) := c2(y, TX) = c2(y, Ω1
X) ∈ Q,
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s2(y) = c2
1(y)− c2(y)

are local Chern numbers at the singularity y. They are obtained from the local Chern classes
ci(y, TX) ∈ H2i

dRc((Ũy, E),Q), Ũy = σ−1(Uy) ⊂ X and dRc stands for de Rham cohomology with
compact support ([3, §3]).

3 The invariants ℏ0(y, m) and their asymptotics for An

singularities

3.1 An model
The affine model for the An singularity that will be used is X = {xz − yn+1 = 0} ⊂ C3. The

affine surface X is the quotient space obtained from C2 via the diagonal action of Zn+1 coming from
the representation ρ : Zn+1 = ⟨τ⟩ → SL(2,C) with:

ρ(τ) =
[

ϵ 0
0 ϵn

]
(2.1)

where ϵ is a n + 1-primitive root of unity.

The standard smoothing of X, π : C2 → X, is given by π(z1, z2) = (zn+1
1 , z1z2, zn+1

2 ). Let
σ : X̃ → X be the minimal good resolution of X, which can be obtained via successive blow ups of
the ambient space C3 at points infinitesimally near the origin (n blow ups for n odd and n − 1 for
n even). Let φ : C2 99K X̃ be the n + 1 to 1 rational map σ−1 ◦ π, whose indeterminacy locus is
Ind(φ) = {(0, 0)}.

The resolution X̃ has a covering consisting of n + 1 open sets Ur, r = 0, ..., n, isomorphic to the
affine plane. The isomorphisms ϕr : C2 → Ur, with u1 and u2 coordinaters for C2, can be chosen
such that the following diagram holds:

C2

C2 Ur ⊂ X̃ X = {xz − yn+1 = 0} ⊂ C3ϕr σ

π,(zn+1
1 , z1z2, zn+1

2 )

φr

φ

and

φ∗
ru1 = zn+1−r

1 z−r
2 φ∗

ru2 = zr−n
1 zr+1

2 (2.2)

The exceptional locus of σ, E = E1 + ... + En, is a sum of n (−2)-curves that intersect transversally
with intersection properties given by the An-Dykin diagram. The relation between the open covering
{Ur} with coordinates ui,r = ui ◦ ϕ−1

r , i = 1, 2, and the exceptional set is given by:
Ej ⊂ Uj−1 ∪ Uj Ej ∩ Ur = ∅ if r ̸= j − 1, j

Ej ∩ Uj−1 = {u1,j−1 = 0} Ej ∩ Uj = {u2,j = 0} (2.3)

Also relevant is the extension of the exceptional set Ê = E ∪ E0 ∪ En+1, where E0 = {u2,0 =
0} ⊂ U0 and En+1 = {u1,n = 0} ⊂ Un. The following holds for all r = 0, ..., n:

X̃ \ Ê = Ur \ {u1,ru2,r = 0} (2.4)
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Note: To obtain uniformity in the formulas ahead we also consider r = −1 and r = n + 1, where we
define φr : C2 → C2 for r = −1, n + 1 using the same formulas as in (2.2).

The following diagram coming, via restrictions, from diagram (2.2) is also relevant:

C∗ × C∗

C∗ × C∗ X∗ := (C∗ × C∗)/Zn+1
σ ◦ ϕr

π
φr

(2.5)

3.2 The 3-gradation of the algebra of symmetric differentials S(C∗ × C∗)

3.2.1 Block partition

The algebra of regular symmetric differentials on C∗ × C∗ ⊂ C2:

S(C∗ × C∗) =
∞⊕

m=0
H0(C∗ × C∗, SmΩ1

C2) = C[z1, z−1
1 , z2, z−1

2 , dz1, dz2]

has the natural bi-gradation with bi-graded pieces:
S(C∗ × C∗)(i,m) = H0(C∗ × C∗, SmΩ1

C2)(i) := C[z1, z−1
1 , z2, z−1

2 ](i) ⊗ C[dz1, dz2](m)

with i ∈ Z and m ∈ Z≥0. Also relevant to us is the subalgebra S(C2) = C[z1, z2, dz1, dz2] of
S(C∗ × C∗) with induced bi-gradation with bi-graded pieces H0(C2, SmΩ1

C2)(i,m), i, m ∈ Z≥0.

A symmetric differential w ∈ S(C∗×C∗)(i,m) is said to be bi-homogeneous of order i and degree

m. The symmetric differentials zi1
1 zi2

2 (dz1)m1(dz2)m2 will be called monomials. We have:

zi1
1 zi2

2 (dz1)m1(dz2)m2 is Zn+1-invariant ⇐⇒ i1 + m1 + n(i2 + m2)n+1≡ 0 (2.6)

Denote by S(C∗ × C∗)Zn+1 the subalgebra of Zn+1-invariant differentials.

From diagram (2.5) one obtains for each r = 0, ..., n:

S(C∗ × C∗)Zn+1

S(C∗ × C∗) S(X∗)
(σ ◦ ϕr)∗

∼=

π∗∼=
φ∗

r

∼=

(2.7)

The goal is to introduce a 3-gradation of S(C∗ ×C∗), with graded pieces spanned by symmetric
differential monomials, that is respected by the isomorphisms φ∗

r . The structure of the pullback of
symmetric differential monomials under the isomorphisms φ∗

r : S(C∗×C∗)→ S(C∗×C∗)Zn+1 is the
motivation for our choice of 3-gradations appearing below.

The pullback by φr of a monomial of degree m, using (2.2), is of the form:

φ∗
r(ui1

1 ui2
2 (du1)m−q(du2)q) =

m∑
l=0

cql(r)zj1(i1,i2,m,q,r)+l
1 z

j2(i1,i2,m,q,r)−l
2 (dz1)m−l(dz2)l (2.8)
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where

j1(i1, i2, m, q, r) = (n + 1− r)i1 + (r − n)i2 + (n− r)m + (2r − 2n− 1)q
j2(i1, i2, m, q, r) = (−r)i1 + (r + 1)i2 + (−r)m + (2r + 1)q, (2.9)

and the coefficients cql(r) are determined by the equality:

[(n + 1− r)X − rY ]m−q [(r − n)X + (r + 1)Y ]q =
m∑

l=0
cql(r)Xm−lY l. (2.10)

(all monomials on the right side of (2.8) are Zn+1-invariant).

The expression (2.8) jointly with (2.9) motivates the partition of the set of all monomials of
degree m, say in the coordinates (z1, z2), into the following blocks of m + 1 monomials:

Bk,i,m :=
{

zi−k+l
1 zk−l

2 (dz1)m−l(dz2)l)
}

l=0,...,m
, (2.11)

where i, k ∈ Z. The monomials in a single block are either all Zn+1-invariant or all not:

Bk,i,m ∩ S(C∗ × C∗)Zn+1 =
{

Bk,i,m, if 2k≡i + m mod n + 1
∅, otherwise.

When dealing with blocks of Zn+1-invariant monomials a distinct indexing will be useful. The
Zn+1-invariance condition corresponds to k̂ = 2k−i−m

n+1 ∈ Z. Set:

B̂k̂,i,m := Bk(k̂),i,m k(k̂) = i + m

2 + n + 1
2 k̂ (2.12)

The permissible indices (k̂, i, m) satisfy:

(n + 1)k̂ ≡ i + m mod 2 (2.13)

Condition (2.13) has a dichotomy:

(n + 1)k̂ ≡ i + m mod 2 ⇐⇒
{

i + m ≡ 0 mod 2 n odd
k̂ ≡ i + m mod 2 n even

3.2.2 3-gradations for S(C∗ × C∗) and S(C2)Zn+1

Set the 3-gradation of S(C∗ × C∗) to be:

S(C∗ × C∗) =
⊕

m∈Z≥0
i,k∈Z

Vk,i,m (2.14)

where the graded pieces are:

Vk,i,m := Span(Bk,i,m)
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(Vk,i,mVk′,i′,m′ ⊂ Vk+k′,i+i′,m+m′).

We have two variants of a 3-gradation of S(C∗ × C∗)Zn+1 :

S(C∗ × C∗)Zn+1 =
⊕

m∈Z≥0
i,k∈Z

2k−i−m≡0 mod n+1

Vk,i,m (2.15)

and the other using V̂k̂,i,m := Span(B̂k̂,i,m) is:

S(C∗ × C∗)Zn+1 =
⊕

m∈Z≥0

i,k̂∈Z
(n+1)k̂≡i+m mod 2

V̂k̂,i,m (2.16)

For each r = 0, ..., n the pullback morphisms φ∗
r give the isomorphisms:

S(C∗ × C∗) φ∗
r−−→ S(C∗ × C∗)Zn+1

that by (2.8) respects the 3-gradations. The relations (2.9) describe which graded pieces are sent to
which graded pieces:

φ∗
rVk−r( 2k−m−i

n+1 ),i+(n−2r)( 2k−m−i
n+1 ),m = Vk,i,m

We will be interested in the following reformulation of the above:

φ∗
rVk̂,i,m,r = V̂k̂,i,m

Vk̂,i,m,r := V i+m
2 +( n+1

2 −r)k̂,i+(n−2r)k̂,m (2.17)

The above gradation of S(C∗ × C∗) induces a 3-gradation on S(C2) :

S(C2) =
⊕

i,m∈Z≥0
0≤k≤m+i

V reg
k,i,m (2.18)

The graded pieces are:

V reg
k,i,m := Vk,i,m ∩H0(C2, SmΩ1

C2) = Span(Breg
k,i,m)

where Breg
k,i,m :=

{
zi1

1 zi2
2 dzm1

1 dzm2
2 ∈ Bk,i,m|i1, i2 ≥ 0

}
.

Remark: The condition 0 ≤ k ≤ m + i is equivalent to Breg
k,i,m ̸= ∅.

We will also use with j = 1, 2:

Breg,j
k,i,m :=

{
zi1

1 zi2
2 dzm1

1 dzm2
2 ∈ Bk,i,m | ij ≥ 0

}
For the algebra S(C2)Zn+1 we will consider the 3-gradation:
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S(C2)Zn+1 =
⊕

i,m∈Z≥0

|k̂|≤ i+m
n+1

(n+1)k̂≡i+m mod 2

V̂ reg
k̂,i,m

(2.19)

The condition |k̂| ≤ i+m
n+1 is equivalent to B̂reg

k̂,i,m
̸= ∅.

3.3 Finding ℏ0(An, m) and its asymptotics

In this section we derive, for any fixed n, a formula for the function (notation of section 2.1):

ℏ0(An, m) = dim
(
H0(X̃ \ E, SmΩ1

X̃
)
/

H0(X̃, SmΩ1
X̃

)
)

giving the dimension of the space of obstructions for m-differentials on X̃ \E to extend holomorphi-
cally through E. We will observe that ℏ0(An, m) is a quasi-polynomial of degree 3 in m. The main
purpose is to determine the leading asymptotics:

ℏ0
Ω(An) = lim

m→∞

ℏ0(An, m)
m3

3.3.1 From X̃ to C2

In this section, X̃ is the minimal resolution of the affine model X of the An singularity as described
in section 2.1. We have the commutative diagram involving the resolution σ and the smoothing π of
X:

(C2, 0)

(X̃, E) (X, x)

φ
π

σ

The map φ induces the isomorphisms between the algebras of symmetric differentials:

S
(
X̃ \ E

) φ∗

−−→∼= S
(
C2)Zn+1 , S

(
X̃ \ Ê

)
φ∗

−−→∼= S (C∗ × C∗)Zn+1

(recall: Ê = E + E0 + En+1 as in 2.1). The first isomorphism follows from

H0 (X̃ \ E, SmΩ1
X̃

) σ∗

←−∼= H0 (X \ {x}, SmΩ1
X

) π∗

−→∼= H0 (C2 \ {0}, SmΩ1
C2

)Zn+1

plus the equality
H0 (C2, SmΩ1

C2

)Zn+1 = H0 (C2 \ {0}, SmΩ1
C2

)Zn+1

due to the reflexivity of the sheaf SmΩ1
C2 . The second isomorphism follows from similar arguments.

We make use of the following diagram:
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H0(X̃ \ Ê, SmΩ1
X̃

) H0(C∗ × C∗, SmΩ1
C2)Zn+1

H0(C∗ × C∗, SmΩ1
C2)

H0(X̃ \ E, SmΩ1
X̃

) H0(C2, SmΩ1
C2)Zn+1

H0(C2, SmΩ1
C2)

φ∗

∼=
φ∗

r

∼=

φ∗
r

φ∗

∼=

to turn the task of finding ℏ0(An, m) from the spaces X̃ and X̃ \ E to C2, via:

ℏ0(An, m) = dim
(

H0(C2, SmΩ1
C2)

Zn+1

/
n⋂

r=0
φ∗

rH0(C2, SmΩ1
C2)
)

(2.20)

The above equality holds since a differential w ∈ H0(X̃ \E, SmΩ1
X̃

) has no poles along Er and Er+1
if and only if φ∗w ∈ φ∗

rH0(C2, SmΩ1
C2).

Notice that whilst for each r, φ∗
rH0(C2, SmΩ1

C2) ̸⊂ H0(C2, SmΩ1
C2) (differentials will be Zn+1 −

invariant but not necessarily holomorphic along {z1z2 = 0}), one has
n⋂

r=0
φ∗

rH0(C2, SmΩ1
C2) ⊂ H0(C2, SmΩ1

C2)

since w ∈ φ∗
0H0(C2, SmΩ1

C2) ∩ φ∗
nH0(C2, SmΩ1

C2) is w = φ∗w̃ with w̃ ∈ H0(X̃ \ E, SmΩ1
X̃

).

3.3.2 3-gradation breakdown of ℏ0(An, m)

The 3-gradation breakdown of ℏ0(An, m) follows from the the pullback mappings, φ∗
r , sending

graded piece to graded piece of the 3-gradation of H0(C∗ × C∗, SmΩ1
C2) given in (2.14).

Let w ∈ H0(C2, SmΩ1
C2)Zn+1 . Since no monomial belongs to two blocks that generate two distinct

graded pieces, the following are equivalent:

i) (φ∗)−1w extends regularly along E

ii) (φ∗)−1wk̂,i,m extends regularly along E, ∀ wk̂,i,m in the (k̂, i, m)-decomposition of w.

Also relevant to this equivalence and what will follow is the decomposition for each r = 0, ..., n:

(φ∗
r)−1wk̂,i,m =

∑
wk̂,i,m,r , wk̂,i,m,r ∈ Vk̂,i,m,r

with this decomposition, the following statements are equivalent to (φ∗)−1wk̂,i,m extending regularly
along E:

a) wk̂,i,m,r ∈ V reg
k̂,i,m,r

, for r = 0, ..., n

b) wk̂,i,m,r ∈ V reg,1
k̂,i,m,r

, for r = −1, ..., n

c) wk̂,i,m ∈
⋂n

r=−1 φ∗
rV reg,1

k̂,i,m,r

See the note below (2.4) for the meaning of the case r = −1. The artificial case of r = −1 in
(b) and (c) will be used to streamline formulas. We observe that φ∗

r−1V reg,1
k̂,i,m,r−1 = φ∗

rV reg,2
k̂,i,m,r

, for
r = 0, ..., n + 1.

Proposition 4 Let (X̃, E) be the germ of the minimal resolution of (X, x) the germ of an An singularity.
Then:

ℏ0(An, m) =
∑

0≤i≤mn−1
|k̂|≤ i+m

n+1

(n+1)k̂≡i+m mod 2

ℏ0(An, k̂, i, m) (2.21)
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where ℏ0(An, k̂, i, m) := dim
(

V̂ reg
k̂,i,m⋂n

r=−1
φ∗

rV reg,1
k̂,i,m,r

)
.

Note. The inclusion
⋂n

r=−1 φ∗
rV reg,1

k̂,i,m,r
⊂ V̂ reg

k̂,i,m
holds since V̂ reg

k̂,i,m
= φ∗

−1V reg,1
k̂,i,m,−1 ∩ φ∗

nV reg,1
k̂,i,m,n

.

Proof The result follows from (2.20), the decomposition:

H0(C2, SmΩ1
C2 )

Zn+1 =
⊕

i∈Z≥0

|k̂|≤ i+m
n+1

(n+1)k̂≡i+m mod 2

V̂ reg
k̂,i,m

and from the equivalences i) ⇐⇒ ii) and a) ⇐⇒ b) ⇐⇒ c) that imply:

n⋂
r=0

φ∗
rH0(C2, SmΩ1

C2 ) =
⊕

i∈Z≥0

|k̂|≤ i+m
n+1

(n+1)k̂≡i+m mod 2

n⋂
r=−1

φ∗
rV reg,1

k̂,i,m,r

For the upper bound i ≤ mn − 1, see Theorem 3(b). □

3.3.3 Independence of the conditions to have no poles along the Er and the
formula for h0(An, k̂, i, m)

It follows from Proposition 1 that we need to get a handle on the subspaces φ∗
rV reg,1

k̂,i,m,r
⊂ V̂k̂,i,m,

r = −1, ..., n and determine how they intersect each other.

We will show that the subspaces φ∗
rV reg,1

k̂,i,m,r
of V̂k̂,i,m are in general position, which implies that

the dimension of their intersection is the expected dimension. It also means that the conditions for
a given differential not to have poles along the components Er are independent of each other.

Lemma 1 (Independence of the conditions to have no poles along the Er) The subspaces φ∗
rV reg,1

k̂,i,m,r
⊂ V̂

k̂,i,m
,

r = −1, ..., n, of V̂
k̂,i,m

are in general position.

Proof Set µq := z
i1(k̂,i,m)+q
1 z

i2(k̂,i,m)−q
2 (dz1)m−q(dz2)q, q = 0, ..., m, the monomials spanning V̂

k̂,i,m
and

µq,r := u
i1(k̂,i,m,r)+q
1 u

i2(k̂,i,m,r)−q
2 (du1)m−q(du2)q, q = 0, ..., m, the monomials spanning V

k̂,i,m,r
.

Consider the commutative diagram of isomorphisms:

V
k̂,i,m,r

V̂
k̂,i,m

C[X, Y ](m)

φ∗
r

Ψr
Ψ

where the C-linear map Ψ is defined by Ψ(µq) = Xm−qY q.

From (2.8) and (2.10) of section 2.2, it follows that:

Ψr(µr,q) = [(n + 1 − r)X − rY ]m−q [(r − n)X + (r + 1)Y ]q

12



and hence the zero locus Z (Ψr(µr,q)) = (m − q) pr,1 + q pr,2 ⊂ P1, where pr,1 = [r : n + 1 − r] and
pr,2 = [r + 1 : r − n].

The monomials µr,q with no poles along Er+1 ∩ Ur = {u1 = 0}, generating V reg,1
k̂,i,m,r

, have q ≥

max{0, −i1(k̂, i, m, r)}, hence:

Ψr(V reg,1
k̂,i,m,r

) =
{

P ∈ C[X, Y ]
∣∣ Z(P ) ≥ max{0, −i1(k̂, i, m, r)} pr,2

}
Since the points pr,2, r = −1, ..., n, are all distinct, the membership conditions for P ∈ Ψr(V reg,1

k̂,i,m,r
),

r = −1, ..., n, are independent. Therefore the subspaces Ψr(V reg,1
k̂,i,m,r

) ⊂ C[X, Y ](m) are in general position
and the result follows.

□

Corollary 1 For each triple (k̂, i, m), the contribution ℏ0(An, k̂, i, m) to ℏ0(An, m) is:

ℏ0(An, k̂, i, m) = min

{
n−1∑
r=0

codim(V reg,1

k̂,i,m,r
, V

k̂,i,m,r
) , dim V̂ reg

k̂,i,m

}
(2.22)

where:

i) codim(V reg,1

k̂,i,m,r
, Vk̂,i,m,r) = max

{
0, m−i

2 + 2r−n+1
2 k̂

}
≤ m

ii) dim V̂ reg

k̂,i,m
= max

{
0, m + 1−

∑
r=−1,n codim(V reg,1

k̂,i,m,r
, Vk̂,i,m,r)

}

Proof The formula (2.22) follows directly from the subspaces φ∗
rV reg,1

k̂,i,m,r
of V̂

k̂,i,m
being in general position

(Lemma 1) plus the fact that ℏ0(An, k̂, i, m) = codim(
⋂n

r=−1 φ∗
rV reg,1

k̂,i,m,r
, V̂ reg

k̂,i,m
).

As for the expression in (i), we have that the monomials spanning V
k̂,i,m,r

are ui1+l
1 ui2−l

2 dzm−l
1 dzl

2 where
l = 0, ..., m and i1 = i−m

2 + −2r+n−1
2 k̂ (a consequence of (2.17). Hence, there are max{0, −i1} monomials

which are not regular along {u1 = 0}. Note that in the range |k̂| ≤ ⌊ i+m
n+1 ⌋ we have max{0, −i1} ≤ m.

Identity ii) follows from the note after Proposition 1 and Lemma 1. □

3.3.4 The geometry of h0(An, k̂, i, m)

In the previous section, the function ℏ0(An, k̂, i, m) was fully determined in Corollary 1. To
understand ℏ0(An, m) the geometric properties of the function ℏ0(An, k̂, i, m), when n and m are
fixed, play an important role and this section uncovers them.

The function ℏ0(An, k̂, i, m) is an even function relative to k̂, a consequence of
codim(V reg,1

k̂,i,m,r
, Vk̂,i,m,r) = codim(V reg,1

−k̂,i,m,n−1−r
, V−k̂,i,m,n−1−r).

Fix n, using corollary 1 we associate to each m ≥ 0 a polygonal region Pn(m) in the (i, k̂)−plane.
The polygon Pn(m) is the closure of the region where ℏ0(An, k̂, i, m) is nonvanishing (with i and k̂
being considered as continuous parameters). The polygon Pn(m) has the polygonal decomposition

Pn(m) = ∪2n+2
j=1 P

j
n(m)

where the Pj
n(m), j = 1, ..., 2n + 2, are the regions where ℏ0(An, k̂, i, m) is given by a single affine

function on i and k̂, making this decomposition unique, see below for more details.
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Remark: All the polygons Pj
n(m) are convex with the exception of two. One can do a convex

subdivision of Pn(m) = ∪2n+2
j=1 Pj

n(m) in a natural way,

Pn(m) = ∪4n
r=1P ′r

n(m) (2.23)
and more importantly the convex polygons P ′r

n (m) change with m via
P ′r

n (m) = {x ∈ R2
∣∣ µr,l(x) ≤ ar,lm + br,l, l = 1, ..., kr, ar,l, br,l ∈ Q} with µr,l linear forms with

Z-coefficients. This type of decomposition will allow the use of the theory of polynomial weighted
lattice sums over convex polytopes (see [8], [9], [10]) to derive properties of the function ℏ0(An, m),
such as being a quasi-polynomial of degree 3 in m.

The fact, that there are 2n + 2 polygons Pj
n(m) follows from the discussion below and the

properties of the function ℏ0(An, k̂, i, m) derived from corollary 1. The polygons Pj
n(m) have some

of the properties described in the remark: the coordinates of the vertices are affine functions of m
and the slopes of the edges are independent of m.

To determine the polygonal decomposition defined above, we need to consider:

1) The n+2 lines coming from the components Er, r = 0, ..., n+1, of Ê. These lines are given by
m−i

2 + 2(r−1)−n+1
2 k̂ = 0 and separate the half planes where the codim(V reg,1

k̂,i,m,r−1, Vk̂,i,m,r−1) equals
either m−i

2 + 2(r−1)−n+1
2 k̂ or 0. All the lines pass through the point (m, 0) in the (i, k̂)-plane. The

relevant half plane {i ≥ 0} is therefore separated in 2(n + 2) radial sectors with center the point
(m, 0).

2) Two extra lines are required to determine the regions where dim V̂ reg

k̂,i,m
either = 0 or =

m + 1−
∑

r=−1,n codim(V reg,1

k̂,i,m,r
, Vk̂,i,m,r). The two lines of 1) associated with E0 and En+1 are also

required to determine these regions. We have the following:

k̂ = i−m
n+1

k̂ = − m+i+2
n+1

k̂ = m−i
n+1

k̂ = m+i+2
n+1

i+1

m+i
2 − n+1

2 (k̂+1)

m+i
2 + n+1

2 (k̂+1)

m+1

0

0

0

Fig. 1: Graph of dim V̂ reg

k̂,i,m
on the (k̂, i) plane

3) The 2(n+2) sectors defined in 1), except for three between the lines associated to En,En+1,E0
and E1 and where

∑n−1
r=0 codim(V reg,1

k̂,i,m,r
, Vk̂,i,m,r) = 0, each have a line segment separating the regions

where ℏ0(An, k̂, i, m) =
∑n−1

r=0 codim(V reg,1

k̂,i,m,r
, Vk̂,i,m,r) or ℏ0(An, k̂, i, m) = dim V̂ reg

k̂,i,m
.

4) Altogether there are 2n + 2 polygons Pj
n(m) where ℏ0(An, k̂, i, m) as a function in i and k̂ is

defined by a single nontrivial affine expression (the case n = 3 is illustrated in the next figure). This
follows from 1), 2) and 3) plus the fact that dim V̂ reg

k̂,i,m
has the same expression in the sectors bounded

by the lines En, En+1, E0 and E1. Recall that there is the symmetry coming from ℏ0(An, k̂, i, m)
being an even function relative to k̂.

5) The above are statements are for fixed n and independent of m. As for dependence in m. The
coordinates of the vertices of the 2n + 2 polygonal regions are affine functions in m with rational
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coefficients. Also important if one wants to give a complete description of the function ℏ0(An, m),
the slopes of the boundary lines are independent of m.

6) The affine functions ℏ0(An, k̂, i, m)j := ℏ0(An, k̂, i, m)|Pj
n(m) have the following structure for

each j = 1, ..., 2n + 2,

ℏ0(An, k̂, i, m)j = aj(n)i + bj(n)k̂ + cj(n)m + dj(n) (2.24)

aj(n), bj(n), cj(n), dj(n) ∈ Q. It is relevant to note the fact that the coefficients in i and k̂ are
independent of m.

Below we illustrate the function ℏ0(An, k̂, i, m) as a function of k̂ and i for n = 3. All key features
of the general case are present.

m + 1

m + 2
4

3m + 2

−m− 1

m

−m + 2
4

m + i

2 − 2k̂ + 1

i + 1

m + i

2 + 2k̂ + 1

3
2(m− i)

m− i

2 + k̂

m− i

2 − k̂

m
−

i −
k̂

m
−

i +
k̂

E4

E0

E1

E3

E2

Fig. 2: The function ℏ0(A3, k̂, i, m) with m fixed on the (i, k̂)-plane. Recall that ℏ0(A3, k̂, i, m) is
only defined at integral points with 4k̂ ≡ i + m mod 2.

3.3.5 Closed formula for the asymptotics of ℏ0(An, m)
As mentioned in the introduction, one of the aims of this paper is to find the contribution that each
An singularity gives towards the m-growth asymptotics of h1(X, SmΩX) when X is the minimal
resolution of a surface of general type Y with canonical singularities. We saw in section 1 that
this contribution can be derived from ℏ0

Ω(An) = limm→∞
ℏ0(An,m)

m3 . In this section we give a closed
formula for ℏ0

Ω(An).

Proof (of Theorem 1) Part (a) follows directly from Proposition 4
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ℏ0(An, m) =
∑

0≤i≤mn−1
|k̂|≤ i+m

n+1

(n+1)k̂≡i+m mod 2

ℏ0(An, k̂, i, m),

Corollary 1 describing ℏ0(An, x2, x1, m)(= hn,m(x1, x2)), and the polygonal geometry associated to
ℏ0(An, k̂, i, m) described in 3.3.4.

Part (b) asserts that

ℏ0
Ω(An) := lim

m→∞
ℏ0(An, m)

m3 = 4
3

n∑
j=1

1
j2 − 12n4 + 65n3 + 117n2 + 72n

6(n + 1)2(n + 2)2 . (2.25)

and

ℏ0(An, m) = ℏ0
Ω(An)m3 + 3ℏ0

Ω(An)m2 + O(m), (2.26)

Consider:

I(An, m) :=
∫∫

Pn(m)
hn,m(x)dx

Claim 1. ∑
x∈Pn(m)∩Z2

hn,m(x) = I(An, m) + O(m)

If x = (x1, x2), set Sx := [x1 − 1
2 , x1 + 1

2 ] × [x2 − 1
2 , x2 + 1

2 ]. Consider:

CPn(m) = {x ∈ Pn(m) ∩ Z2 — Sx ⊂ Pn(m)}

P CPn(m) = {x ∈ Pn(m) ∩ Z2 — Sx ̸⊂ Pn(m)}

OPn(m) = {x ∈ Z2 \ (Pn(m) ∩ Z2) — Sx ∩ Pn(m) ̸= ∅}

Note Pn(m) ∩ Z2 = CPn(m) ∪ P CPn(m) and:

Pn(m) ⊂ ∪x∈CPn(m)∪P CPn(m)∪OPn(m) Sx (2.27)

We start by showing:

∑
x∈Pn(m)∩Z2

hn,m(x) =
∑

x∈Pn(m)∩Z2

∫∫
Sx

hn,m(y) dy + O(m) (2.28)

Note: hn,m(y) = 0 if y ̸∈ Pn(m).

We need a further decomposition of CPn(m) with:

SCPn(m) = {x ∈ CPn(m)|∃j, Sx ⊂ Pj
n(m)}

and MCPn(m) = CPn(m) \ SCPn(m). The points x ∈ CPn(m), for which Sx is contained in a single polygon
Pj

n(m) and hence where hn,m(x) given by a single affine function on Sx, satisfy:

hn,m(x) =
∫∫

Sx

hn,m(y) dy, ∀x ∈ SCPn(m) (2.29)

If x ∈ MCPn(m) the equality above doesn’t hold, but:∣∣∣∣hn,m(x) −
∫∫

Sx

hn,m(y) dy

∣∣∣∣ < C(n), ∀x ∈ MCPn(m) (2.30)

where C(n) = max{|aj(n)|, |bj(n)|; j = 1, ..., 2n + 2}, with aj(n) and bj(n) from (2.24), is a bound on the
partial derivatives of ℏ0(An, y, m) (bound independent from m).
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Let x ∈ P CPn(m), using the fact that 0 ≤ hn,m(z) ≤ 1 ∀z ∈ ∂Pn(m) and C(n), it follows that ∀y ∈ Sx,
|hn,m(y)| < 1 + C(n) (hn,m(y) = 0 if y ̸∈ Pn(m)). Hence:∣∣∣∣hn,m(x) −

∫∫
Sx

hn,m(y) dy

∣∣∣∣ < 1 + C(n), ∀x ∈ P CPn(m) (2.31)

The subclaim (2.28) follows from #(MCPn(m) ∪ P CPn(m))∼O(m); it grows linearly with m just as the
sum of the lengths of all edges of the polygonal decomposition of Pn(m).

To prove the claim 1, it remains to show that:∑
x∈OPn(m)

∫∫
Sx

hn,m(y) dy =
∫∫

Pn(m)
hn,m(y) dy −

∑
x∈Pn(m)∩Z2

∫∫
Sx

hn,m(y) dy = O(m).

This follows from |hn,m(y)| < 1 + C(n) for all y ∈ Sx, whenever x ∈ OPn(m) and #OPn(m) = O(m).

Claim 2. ∑
x∈Pn(m)∩Z2

hn,m(x) = 2ℏ0(An, m) + O(m)

Set

ℏ0(An, k̂, m) :=
n(m+1)−1∑

i=0
(n+1)k̂≡i+m mod 2

ℏ0(An, k̂, i, m)

then ℏ0(An, m) =
∑

|k̂|≤m+1 ℏ
0(An, k̂, m). It is enough to show ∃ A(n) > 0 such that:∣∣∣∣∣∣

n(m+1)−1∑
i=0

ℏ0(An, k̂, i, m) − 2ℏ0(An, k̂, m)

∣∣∣∣∣∣ < A(n) ∀|k̂| ≤ m + 1 (2.32)

For fixed k̂ (and also n and m), the function ℏ0(An, k̂, i, m) is a piecewise affine function in i with at
most n + 2 affine pieces (and continuous if i is considered a continuous parameter).

One has ℏ0(An, k̂, i, m) = 1
2 [ℏ0(An, k̂, i − 1, m) + ℏ0(An, k̂, i + 1, m)] if i − 1, i, i + 1 is the same affine

piece. Otherwise one has |ℏ0(An, k̂, i, m) − 1
2 [ℏ0(An, k̂, i − 1, m) + ℏ0(An, k̂, i + 1, m)]| ≤ C(n) with C(n) as

above. One also has the boundary condition that
0 ≤ ℏ0(An, k̂, 0, m), ℏ0(An, k̂, n(m + 1) − 1, m) ≤ 1.

All the above implies A(n) = 2+(n+2)C(n) works in (2.32), with 2+C(n) bounding the noncancelation
at end points and (n + 1)C(n) bounding the noncancelation at the (at most) n + 1 transition points between
the affine functions.

Claims 1 and 2 and the symmetry of both Pn(m) and hn,m(x) with respect to the x1-axis (i.e. i-axis)
imply that

ℏ0(An, m) =
∫∫

P+
n (m)

hn,m(x) dy + O(m)

where P+
n (m) := Pn(m) ∩ {x2 ≥ 0}. The polygon P+

n (m) has a polygonal decomposition P+
n (m) =

∪n+1
ℓ=0 Pℓ

n(m), where for each ℓ = 0, ..., n + 1,

hn,m,ℓ(x) := hn,m(x)|Pℓ
n(m)

is given by a single affine expression in x = (x1, x2) (and m). The polygons Pℓ
n(m), ℓ = 0, ..., n + 1 will be

described via their vertices. To that end, for j = 1, ..., n consider the points:

vj :=
(

2j(m + 1)
j − n − 3 + 2(j − 1)(m + 1)

−j + n + 2 + m,
2(m + 1)

(j − n − 3)(j − n − 2)

)
(i) P0

n(m): (
0,

m

n + 1

)
→ v1 →

(
mn− 2
2 + n

, 0
)
→ (0, 0)→

(
0,

m

n + 1

)
,

and where hn,m,0(x) = x1 + 1.

17



(ii) P1
n(m):

v1 → v2 → (m, 0)→
(

mn− 2
2 + n

, 0
)
→ v1,

and hn,m,1(x) = n(m−x1)
2 .

(iii) Pj
n(m), j = 2, . . . , n:

For j = 2, . . . , n− 1,

vj → vj+1 → (m, 0)→ vj

and for j = n,

vn → (n(m + 1)− 1, m + 1)→ (m, 0)→ vn

and the function hn,m,j(x) = 1
2 ((j − 1)− n)(x1 − (j − 1)x2 −m).

(iv) Pn+1
n (m): (

0,
m + 2
n + 1

)
→ (n(m + 1)− 1, m + 1)→ vn → · · ·

· · · → v2 → v1 →
(

0,
m

n + 1

)
→
(

0,
m + 2
n + 1

)
and where hn,m,n+1(x) = 1

2 (x1 − x2(n + 1) + m + 2).

The above Pℓ
n(m) and hn,m,ℓ(x), ℓ = 0, ..., n + 1 give:

ℏ0(An, m) =
n+1∑
ℓ=0

∫∫
Pℓ

n(m)
hn,m,ℓ(x)dx = ℏ0

Ω(An)m3 + 3ℏ0
Ω(An)m2 + O(m)

with ℏ0
Ω(An) as in (2.25). □

Corollary 2 The invariants ℏ0
Ω(An) increase with n and are bounded. Moreover:

lim
n→∞

ℏ0
Ω(An) = 2π2

9 − 2

Remark:

i) The invariant ℏ0
Ω(A1) was known [6] (appeared in [5] unfortunately with an error). The A1 case

is quite direct since the exceptional locus has a single component. Some cases of ℏ0
Ω(An) for low

n were known to the authors [13] and [14].
ii) The function ℏ0(An, m) for fixed n is a quasi-polynomial in m of degree 3. This follows from the

theory of polynomial weighted lattice sums over convex polytopes P(b), b = (b1, ..., bk), defined
by k inequalities, µl(x) ≤ bl, where the linear forms µl(x) are fixed, but b varies ([8], [9], [10]). A
natural convex polygon decomposition of the polygons P+

n (m) with the required properties can
be found by decomposing Pn+1

n (m) into n polygons by introducing vertical line segments above
the points v2,...,vn.

iii) In Theorem 1, we showed that the cubic and quadratic coefficients of ℏ0(An, m) have period 1. In
future work, we describe a divisibility condition for the the least common multiple of the periods
of the coefficients of the quasi-polynomial for all n, which allows us to determine ℏ0(An, m) for
low n. In the case of A1 the least common multiple of the periods is 6 [7]. Knowing the functions
ℏ0(An, m) can be used to obtain information on the degrees of symmetric differentials that occur
on a surface which is a resolution of a surface with An singularities.
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Example 1 For A2 singularities the lcm of the periods of the coefficients is also 6 and ℏ0(A2, m) is described
by the polynomials:

ℏ0(A2, m) =



29
216 m3 + 29

72 m2 + 1
12 m m ≡ 0 (mod 6)

29
216 m3 + 29

72 m2 + 1
8 m − 143

216 m ≡ 1 (mod 6)
29

216 m3 + 29
72 m2 + 7

36 m − 2
27 m ≡ 2 (mod 6)

29
216 m3 + 29

72 m2 + 1
8 m + 3

8 m ≡ 3 (mod 6)
29

216 m3 + 29
72 m2 + 1

12 m − 10
27 m ≡ 4 (mod 6)

29
216 m3 + 29

72 m2 + 17
72 m − 7

216 m ≡ 5 (mod 6)

4 Applications

4.1 The 1st cohomological Ω-asymptotics of An singularities

Let X be the minimal resolution of an orbifold surface Y of general type. The asymptotics of the
localized component Lh1(X, SmΩ1

X) of h1(X, SmΩ1
X) described in (1.3) plays a role in the QS-bigness

criterion (1.4).

In this section, we establish the formula for the contribution given by each An singularity to
Lh1(X, SmΩ1

X). This contribution consists of:

h1
Ω(An) := lim

m→∞

h1(An, m)
m3

and it is called the 1−cohomological Ω-asymptotics of An (the limit exists).

Proof (of Theorem 2) Using relation (1.7) for An singularities,
h1(An, m) = µ(An, m) − χorb(An, m) − ℏ0(An, m)

we find h1
Ω(An) to be

h1
Ω(An) = lim

m→∞
µ(An, m)

m3 − lim
m→∞

χorb(An, m)
m3 − ℏ0

Ω(An).

The invariant ℏ0
Ω(An) was determined in Theorem 1. The invariants χorb(An, m) are given by formula

(1.9) along with the local Chern numbers

c2
1(An) = 0 and c2(An) = e(E) − 1

|GAn
| = n(n + 2)

n + 1 ,

where e(E) is the topological Euler characteristic of the exceptional locus of the minimal resolution and
|GAn

| is the order of the local fundamental group of the An singularity ([3] 3.18). Hence:

lim
m→∞

χorb(An, m)
m3 = s2(An)

3! = −n(n + 2)
6(n + 1) .

Now, we turn our attention to the invariants µ(An, m). The key feature of these invariants is that

lim
m→∞

µ(An, m)
m3 = 0

This is shown in [3] 4.4 or [4]) (it follows from general results on reflexive sheaves on quotient singularities,
see also [2]). A complete description of the invariants µ(An, m) is known to the authors and will appear in
future work. For example, for fixed n, µ(An, m) is a quasi-polynomial of degree 1 in m. □
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Corollary 3 The invariants h1
Ω(An) increase with n and:

lim
n→∞

h1
Ω(An) = ∞

Remark: The QS-bigness criterion (1.4) has h1
Ω(An) as the contribution of An to the localized

component Lh1(X, SmΩ1
X) of h1(X, SmΩ1

X), while in the bigness criterion in [15] the contribution
of An to h1(X, SmΩ1

X) is 1
2 limm→∞

χ(An,m)
m3 . It follows from Theorem 1, Corollary 2, Theorem 2

and Corollary 3 that the contribution of each An in the QS-bigness criterion is always larger and
approaches twice the contribution in the criterion of [15] as n→∞. In Part I of this work, we
present the implications of this remark towards the wider range of pair of Chern numbers for which
the CMS-bigness criterion can hold when compared to the criterion in [15].

Table 1: Computed values of h1
Ω(An) for low n

n 1 2 3 4 5 6 7

h1
Ω(An)

4
27

67
216

1283
2700

577
900

106819
132300

1030727
1058400

5431459
4762800

4.2 Extension of symmetric differentials for An singularities

Let (X̃, E) be the germ of the minimal resolution of a quotient singularity (X, x). It is well known
that symmetric differentials w ∈ H0(X̃ \E, SmΩ1

X̃
) acquire mild poles along the components of the

exceptional divisor E. More precisely, the poles of w ∈ H0(X̃ \ E, SmΩ1
X̃

) along E are at worst
logarithmic, i.e. H0(X̃ \ E, SmΩ1

X̃
) = H0(X̃, SmΩ1

X̃
(logE)) ([11] 4.14, see also [2] 4.7).

We show that for An singularities, the poles that w ∈ H0(X̃ \ E, SmΩ1
X̃

) can acquire at the
exceptional locus are milder (and to what extent) than logarithmic poles (see [6] for A1). More
precisely, in Theorem 3, we give the maximal effective divisor D such that

H0(X̃ \ E, SmΩ1
X̃

) = H0(X̃, SmΩ1
X̃

(logE)⊗OX̃(−D))

.

4.2.1 Decomposition and the order of differentials in S(X̃ \ E)
In this section, X̃ is the minimal resolution of the affine model X of the An singularity as described
in section 2.1. We have the commutative diagram involving the resolution σ and the smoothing π of
X:

(C2, 0)

(X̃, E) (X, x)

φ
π

σ

The map φ induces the isomorphisms between the algebras of symmetric differentials (see section
2.3.2):

S
(
X̃ \ E

) φ∗

−−→∼= S
(
C2)Zn+1

20



S
(

X̃ \ Ê
)

φ∗

−−→∼= S (C∗ × C∗)Zn+1 (3.1)

(recall that Ê = E + E0 + En+1 as in 2.1).

Using the isomorphism (3.1) and the 3-gradation of S (C∗ × C∗)Zn+1 described in 2.2.2, we obtain
the (k̂, i, m)−decomposition of differentials w ∈ S

(
X̃ \ Ê

)
:

w =
∑

m∈Z≥0

i,k̂∈Z

wk̂,i,m (3.2)

where the wk̂,i,m ∈ H0(X̃ \ Ê, SmΩ1
X̃

) are such that φ∗wk̂,i,m ∈ V̂k̂,i,m. If w ∈ S
(
X̃ \ E

)
, then we

have

w =
∑

m,i∈Z≥0

|k̂|≤ i+m
n+1

wk̂,i,m. (3.3)

In this case, we additionally have that φ∗w ∈ S(C2) and hence φ∗wk̂,i,m ∈ V̂ reg
k̂,i,m

.

We say a differential w ∈ S
(

X̃ \ Ê
)

is of type (k̂, i, m) if φ∗w ∈ V̂k̂,i,m. The expression (3.2) is
the decomposition of w relative to the (k̂, i, m)-types.

We define the order of a symmetric differential w ∈ S
(

X̃ \ Ê
)

to be:

ord(w) = min

i
∣∣∣ φ∗w =

∑
i,k̂∈Z

wk̂,i,m and wk̂,i,m ̸= 0

 , (3.4)

i.e. ord(w) is the smallest order of the differential monomials appearing in the monomial decompo-
sition of φ∗w. The ord(w) can also be described as the order of vanishing of φ∗w at 0 ∈ C2, this is
consistent with the definition of order in Theorem 3(a)) for w ∈ H0(X \ x, SmΩ1

X).

4.2.2 Comparison with logarithmic poles
We characterize the allowed poles of a differential w ∈ H0(X̃\E, SmΩ1

X̃
) along E via a comparison

to the maximum poles allowed on logarithmic symmetric differentials µ ∈ H0(X̃ \E, SmΩ1
X̃

(log E)).

Proof (of Theorem 3(a)) Let w ∈ H0(X̃ \ E, SmΩ1
X̃

). The worst pole of w along a component Er of E will
be the worst pole attained by one of its (k̂, i, m)-type components in the decomposition (3.3).

Let w be of (k̂, i, m)-type. To determine the poles of w along the components of E, we examine w
on the coordinate patches Ur, r = 0, ..., n, (described in 2.1) covering X̃. Set wr := w|Ur

, note wr =
(φ∗

r)−1(φ∗w) hence in (φ∗
r)−1V̂

k̂,i,m
. Using 2.17, it follows that wr is in the span of the monomials in the

block B i+m
2 +( n+1

2 −r)k̂,i+(n−2r)k̂,m
.

The relevant observation towards the comparison of the poles of w ∈ H0(X̃ \ E, SmΩ1
X̃

) to logarithmic
poles is the fact that we can rewrite the monomials in a block Bk,i,m, in the following form:

Bk,i,m =
{

zi+m−k
1 zk

2
dzm−q

1
zm−q

1

dzq
2

zq
2

}
q=0,...,m

Hence wr (of type (k̂, i, m)) is given by a sum of the following monomials:
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u
i+m

2 +( n−1
2 −r)k̂

1 u
i+m

2 +( n+1
2 −r)k̂

2
dum−q

1
um−q

1

duq
2

uq
2

, q = 0, ..., m (3.5)

Next we prove the result for An with n ≥ 2 (the case n = 1 follows from the same argument after a minor
setup adjustment). For r = 1, ..., n − 1:

SmΩ1
X̃

(log E)|Ur
=

m⊕
q=0

OUr

dum−q
1

um−q
1

duq
2

uq
2

(recall: for each r = 1, ..., n − 1, Er ∩ Ur = {u2 = 0} and Er+1 ∩ Ur = {u1 = 0}).

It follows from (3.5) that the order of the poles along Er of the monomials involved in the sum giving
wr deviates from the highest pole order possible for a logarithmic symmetric differential by subtracting
i+m

2 + ( n+1
2 − r)k̂. Hence:

wr ∈ H0 (Ur, SmΩ1
X̃

(log E) ⊗ O(−D)
)

with

D =
[

i + m

2 +
(

n + 1
2 − r

)
k̂
]

Er +
[

i + m

2 +
(

n − 1
2 − r

)
k̂
]

Er+1

An easy consequence of the above is:

H0(X̃ \ E, SmΩ1
X̃

) = H0(X̃, SmΩ1
X̃

(log E))

This follows since the condition that D ≥ 0 in all r = 1, ..., n − 1 is equivalent to |k̂| ≤ i+m
n−1 , which holds

since the (k̂, i, m)-components of w ∈ H0(X̃ \ E, SmΩ1
X̃

) satisfy |k̂| ≤ i+m
n+1 .

The full strength of the result follows from:

ar = min
{

i+m
2 + ( n+1

2 − r)k̂
∣∣ i ≥ 0, |k̂| ≤ i+m

n+1 , (n + 1)k̂ ≡ i + m mod 2
}

satisfies:

ar :=

{∑r
j=1⌈ m+2−2j

n+1 ⌉ 1 ≤ r ≤ ⌊ n+1
2 ⌋∑n+1−r

j=1 ⌈ m+2−2j
n+1 ⌉ ⌊ n+1

2 ⌋ < r ≤ n

Set D =
∑n

r=1 arEr. By construction all the (k̂, i, m)-components of w, and hence w, belong to
H0(X̃, SmΩ1

X̃
(log E)⊗OX̃(−D)) and the maximality of D is guaranteed by the definition of ar and the fact.

□

4.2.3 Order and holomorphic extension

Part (b) of Theorem 3 gives a criterion for the holomorphic extension to X̃ of symmetric differ-
entials on X̃ \ E involving the order of the differentials. This result is used through out section 2,
it makes explicit that the h0(An, m) are finite since it implies that the polygon Pn(m) over which
the lattice weighted sum giving h0(An, m) is bounded. We note that this result can also be derived
from corollary 1.

Proof (of Theorem 3 part (b)) If w ∈ H0(X̃ \ E, SmΩ1
X̃

), then the (k̂, i, m)-decomposition of w has w =∑
w

k̂,i,m
, with i ∈ Z≥0 and |k̂| ≤ i+m

n+1 . The differential w extends regularly to X̃ if all the w
k̂,i,m

do. Note
that each w

k̂,i,m
∈ H0(X̃ \ E, SmΩ1

X̃
), hence no need to check about poles along E0 or En+1.

The conditions to guarantee no poles of w
k̂,i,m

along Er, r = 1, ..., n are obtained using (3.5). From (3.5)
it follows that all w of type (k̂, i, m) do not acquire a pole along Er if and only if:

i + m

2 +
(

n + 1
2 − r

)
k̂ ≥ m (3.6)
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First observation is that the r conditions (3.6) on the triples (k̂, i, m) can be reduced to the conditions
for r = 1 and r = n. Second observation is that for i < m the conditions can’t hold. Finally, if i ≥ m, the
conditions become:

|k̂| ≤ i − m

n − 1
The condition above holds for the possible k̂, i.e. in the range given by |k̂| ≤ i+m

n+1 , if i ≥ nm.
□
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